O problema da Medicina Baseada em Evidências e o que fazer em relação a isso

Posted on July 24, 2017

Tags:

This blog is a Portuguese translation of the blog ‘The Evidence Based Medicine problem and what to do about it’ written by Danny Minkow. Read the English version here. With thanks to Cochrane Brazil for the translation. 

Mensagem principal: A Medicina Baseada em Evidências é útil para informar profissionais de saúde sobre o que funciona e o que não funciona, e ajudar a determinar se os benefícios superam os riscos, mas está longe da perfeição. Existem valiosos aprendizados sobre pesquisas, que podem ser compartilhados em várias disciplinas.

Qual é o problema da Medicina Baseada em Evidências?

Em 2005, o Dr. John Ioannidis, um conhecido meta-pesquisador, publicou um artigo na revista PLoS Medicine chamado Por que a maioria dos achados de pesquisas são falsos?. Este artigo causou impacto e gerou uma onda que tem se propagado na comunidade de pesquisadores médicos desde então. Essa publicação é um pouco técnica, tente lê-la se puder, porém recomendo a todos que pelo menos leiam a parte menos técnica, que é a crítica narrativa de sua pesquisa aqui no The Atlantic. Ele traz problemas muito sérios que têm atormentado a comunidade de pesquisadores médicos. Tentarei resumir alguns de seus conceitos.

Eles incluem:

Coletivamente, esses fatores levaram o Dr. Ioannidis a concluir que uma grande parte das evidências que médicos e profissionais de saúde passaram a confiar, incluindo os estudos fundamentais utilizados para tratar pacientes, são frequentemente enganosos, exagerados e, muitas vezes mostram resultados errados.

Na primeira vez que li seu artigo, fiquei um pouco chocado e descrente de que a Medicina Baseada em Evidências pudesse estar tão errada. O artigo me fez questionar: e agora?

O que podemos fazer em relação a este problema da Medicina Baseada em Evidências? Como produziremos pesquisas melhores?

Felizmente, desde que seu artigo original foi publicado, várias pesquisas e grupos acadêmicos fizeram progresso em muitas destas áreas. Em um artigo publicado no JAMA em 2014, o Dr. Ioannidis retorna para sugerir soluções adicionais, particularmente com o objetivo de mudar o sistema de recompensas que prioriza a quantidade de pesquisas sobre a qualidade do desenho dos estudos. Ele recomenda uma lista de critérios de recompensas, ou princípios, para ajudar a avaliar e identificar métodos de pesquisas desejáveis. Ele chama esta lista de “PQRST”, que significa produtividade, qualidade, reprodutibilidade, se é compartilhável e se é traduzível.

Vamos analisar estes conceitos.

Produtividade: Basicamente, significa ajustar uma definição fixa para o significado de “produtividade” na pesquisa. Por exemplo, o número de publicações em revistas de bom nível, a porcentagem de citações por ano para cada campo científico. Não simplesmente publicar um artigo em qualquer lugar apenas pelo reconhecimento de ter algo publicado. 

Qualidade: Significa definir altos padrões de publicação para cada área de métodos de pesquisas e desenhos de estudos. Isso é importante para assegurar maior confiabilidade e credibilidade nos resultados. Estes padrões devem ser também facilmente verificáveis.

Reprodutibilidade: Significa certificar-se de que os dados brutos e os métodos são claros, para que outros pesquisadores independentes possam (e devam) reproduzir o estudo.

Compartilhável: Significa registrar e compartilhar os dados e protocolos de todos os ensaios clínicos.

Traduzível: Significa assegurar que a pesquisa é relevante e que pode ser aplicada em cenários reais.

O desafio de reproduzir e reanalisar estudos prévios foi destacado na edição mais recente do JAMA e discutido no Richard Lehman’s BMJ blog. No artigo, chamado “REanalyses of Randomized Clinical Trial Data, o Dr. Ebrahim, que faz parte da equipe de pesquisadores do Dr. Ioannadis, acha que apenas: 

“Um pequeno número de reanálises de ensaios clínicos randomizados (ECR) foi publicado até hoje. Apenas alguns foram conduzidos por autores totalmente independentes. Trinta e cinco por cento de reanálises publicadas levou a mudanças nos achados, que implicaram em conclusões diferentes daquelas do artigo original sobre o tipo e o número de pacientes que deveriam ser tratados”

Assim, ainda temos um longo caminho a percorrer. A boa notícia é que as pesquisas e os esforços em aprimorar a Medicina Baseada em Evidências estão em andamento. Estamos progredindo através da identificação de fraquezas e abordando-as.

Conclusões e comentários

Gostaria de ressaltar que Alice Buchan, uma pioneira do S4BE, escreveu um texto maravilhoso no início deste ano baseado na série de artigos da Lancet sobre aumentar o valor e reduzir o desperdício em pesquisa aqui. Desperdício em pesquisa é um tópico abordado e houve ótimas ideias sobre como melhorar as prioridades assim como em reduzir o desperdício em estudos. Como Students 4 Best Evidence (S4BE), representamos uma variedade de diferentes disciplinas médicas. Todos nós damos valor à pesquisas e evidências como parte do processo de tomada de decisão clínica. Talvez esses artigos devessem nos interromper sobre o estado de nossa evidência e nos ajudar a pensar sobre as possíveis soluções para o “problema da Medicina Baseada em Evidências”.

O que esses desafios significam para o estado de pesquisa e evidências em nossas próprias respectivas disciplinas? Você já viu alguma destas questões levantadas ou soluções implementadas no seu campo? Como nós podemos, como estudantes, implementar esses aprendizados em nossos respectivos campos e influenciar outros a fazê-lo?

Mais

creative commons license
O problema da Medicina Baseada em Evidências e o que fazer em relação a isso by Cochrane Brazil is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Unless otherwise stated, all images used within the blog are not available for reuse or republication as they are purchased for Students 4 Best Evidence from shutterstock.com.

Leave a Reply

Your email address will not be published. Required fields are marked *